17.01.2024

Уравнение расщепления глюкозы. Процесс гликолиза. Пентозофосфатный путь окисления углеводов


1 Глик о лиз (от греч. glykys - сладкий и lysis - распад, разложение), процесс анаэробного ферментативного негидролитического расщепления углеводов (главным образом глюкозы) в животных тканях, сопровождающийся синтезом аденозинтрифосфорной кислоты (АТФ) (см. Аденозинфосфорные кислоты) заканчивающийся образованием молочной кислоты. Г. имеет большое значение для мышечных клеток, сперматозоидов, растущих (в т. ч. опухолевых) тканей, т.к. обеспечивает накопление энергии в отсутствии кислорода. Продукты, образующиеся при Г., являются субстратами последующих окислительных превращений (см. Трикарбоновых кислот цикл). Процессами, аналогичными Г., являются молочнокислое, маслянокислое, спиртовое и пр. видыброжения, протекающего в растительных, дрожжевых и бактериальных клетках. Интенсивность отдельных стадий Г. зависит от кислотности - водородного показателя - рН (оптимум рН 7-8), температуры и ионного состава среды. Последовательность реакций Г. (см. схему) хорошо изучена, идентифицированы промежуточные продукты, выделены ферменты Г. в кристаллическом или очищенном виде.

2 Углеводный обмен или метаболизм углеводов в организмах животных и человека . Метаболизм углеводов в организме человека состоит из следующих процессов:

    Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов , дальнейшее всасывание моносахаридов из кишечника в кровь .

    Синтез и распад гликогена в тканях (гликогенез и гликогенолиз ), прежде всего в печени .

    Гликолиз - распад глюкозы . Первоначально под этим термином обозначали только анаэробное брожение , которое завершается образованием молочной кислоты (лактата) или этанола иуглекислого газа . В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата , фруктозодифосфата и пирувата как в отсутствии, так и в присутствии кислорода . В последнем случае употребляется термин «аэробный гликолиз», в отличие от «анаэробного гликолиза», завершающегося образованием молочной кислоты или лактата.

    Аэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь (пентозный цикл).

    Взаимопревращение гексоз

    Аэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза - пирувата.

    Глюконеогенез - образование углеводов из неуглеводных продуктов (пирувата , лактата , глицерина , аминокислот , липидов , белков и т. д.).

3Ци ́ кл трикарбо ́ новых кисло ́ т (цикл Кре ́ бса , цитра ́ тный цикл , цикл лимонной кислоты ) - центральная часть общего путикатаболизма , циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO 2 . При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии - АТФ .

Цикл Кребса - это ключевой этап дыхания всех клеток , использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.

Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом , за эту работу он (совместно с Ф. Липманом ) был удостоен Нобелевской премии (1953 год ).

У эукариот все реакции цикла Кребса протекают внутри митохондрий , причём катализирующие их ферменты , кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляет сукцинатдегидрогеназа , которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

4 Пентозофосфатный путь окисления углеводов

Открытие пути прямого окисления углеводов , или, как его называют, пентозофосфатного цикла , принадлежит О. Варбургу, Ф. Липману, Ф. Ди-кенсу и В.А. Энгельгарду. Расхождение путей окисления углеводов – классического (цикл трикарбоновых кислот , или цикл Кребса ) и пентозофос-фатного – начинается со стадии образования гексозомонофосфата. Если глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат, который фосфо-рилируется второй раз и превращается во фруктозо-1,6-бисфосфат, то в этом случае дальнейший распад углеводов происходит по обычному гликолитическому пути с образованием пировиноградной кислоты , которая, окисляясь до ацетил-КоА, затем «сгорает» в цикле Кребса .

Если второго фосфорилирования гексозо-6-монофосфата не происходит, то фосфорилированная глюкоза может подвергаться прямому окислению до фосфопентоз. В норме доля пентозофосфатного пути в количественном превращении глюкозы обычно невелика, варьирует у разных организмов и зависит от типа ткани и ее функционального состояния.

У млекопитающих активность пентозофосфатного цикла относительно высока в печени , надпочечниках, эмбриональнойткани и молочной железе в период лактации. Значение этого пути в обмене веществ велико. Он поставляет восстановленный НАДФН, необходимый для биосинтеза жирных кислот , холестерина и т.д. За счет пентозофосфатного цикла примерно на 50% покрывается потребность организма в НАДФН.

Другая функция пентозофосфатного цикла заключается в том, что он поставляет пентозофосфаты для синтезануклеиновых кислот и многих коферментов . При ряде патологических состояний удельный вес пенто-зофосфатного путиокисления глюкозы возрастает. Механизм реакций пентозофосфатного цикла достаточно расшифрован

Окислительное декарбоксилирование пирувата[править]

Дополнительные сведения: Пируватдегидрогеназный комплекс

Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединённых структурно в мультиферментную систему, получившую название «пируватдегидрогеназный комплекс».

На I стадии этого процесса пируват теряет свою карбоксильную группу в результате взаимодействия с тиаминпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E 1). На II стадии оксиэтильная группа комплекса E 1 -ТПФ-СНОН-СН 3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидролипоилацетилтрансферазой (Е 2). Этот фермент катализирует III стадию - перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продуктаацетил-КоА , который является высокоэнергетическим (макроэргическим ) соединением.

На IV стадии регенерируется окисленная форма липоамида из восстановленного комплекса дигидролипоамид-Е 2 . При участии фермента дигидролипоилдегидрогеназы (Е 3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетической группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН 2 дигидролипоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н + .

Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий . В нём принимают участие (в составе сложного мультиферментного комплекса ) 3 фермента (пируватдегидрогеназа, дигидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 коферментов (ТПФ, амид липоевой кислоты, коэнзим А , ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E 1 , липоамид-Е 2 и ФАД-Е 3), а два - легко диссоциируют (HS-KoA и НАД).

Все эти ферменты, имеющие субъединичное строение, и коферменты организованы в единый комплекс. Поэтому промежуточные продукты способны быстро взаимодействовать друг с другом. Показано, что составляющие комплекс полипептидные цепи субъединиц дигидролипоил-ацетилтрансферазы составляют как бы ядро комплекса, вокруг которого расположены пируватдегидрогеназа и дигидролипоилдегидрогеназа. Принято считать, что нативный ферментный комплекс образуется путем самосборки.

Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом:

Пируват + НАД + + HS-KoA = Ацетил-КоА + НАДН + Н + + СO 2 .

Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.

Образовавшийся в процессе окислительного декарбоксилирования ацетил-КоА подвергается дальнейшему окислению с образованием СО 2 и Н 2 О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса ). Этот процесс, так же как окислительное декарбоксилирование пирувата, происходит в митохондриях клеток.

Общий обзор

Гликолитический путь представляет собой 10 последовательных реакций, каждая из которых катализируется отдельным ферментом .

Процесс гликолиза условно можно разделить на два этапа. Первый этап, протекающий с расходом энергии 2-х молекул АТФ , заключается в расщеплении молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся синтезом АТФ. Сам по себе гликолиз является полностью анаэробным процессом, то есть не требует для протекания реакций присутствия кислорода .

Гликолиз - один из древнейших метаболических процессов, известный почти у всех живых организмов. Предположительно гликолиз появился более 3,5 млрд лет назад у первичных прокариотов .

Локализация

В клетках эукариотических организмов десять ферментов, катализирующих распад глюкозы до ПВК , находятся в цитозоле , все остальные ферменты, имеющие отношение к энергетическому обмену, - в митохондриях и хлоропластах . Поступление глюкозы в клетку осуществляется двумя путями: натрий-зависимый симпорт (преимущественно для энтероцитов и эпителия почечных канальцев) и облегчённая диффузия глюкозы с помощью белков-переносчиков. Работа этих белков-транспортёров контролируется гормонами и, в первую очередь, инсулином . Сильнее всего инсулин стимулирует транспорт глюкозы в мышцах и жировой ткани .

Результат

Результатом гликолиза является превращение одной молекулы глюкозы в две молекулы пировиноградной кислоты (ПВК) и образование двух восстановительных эквивалентов в виде кофермента НАД∙H .

Полное уравнение гликолиза имеет вид:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 2Н + .

При отсутствии или недостатке в клетке кислорода пировиноградная кислота подвергается восстановлению до молочной кислоты, тогда общее уравнение гликолиза будет таким:

Глюкоза + 2АДФ + 2Ф н = 2лактат + 2АТФ + 2H 2 O .

Таким образом, при анаэробном расщеплении одной молекулы глюкозы суммарный чистый выход АТФ составляет две молекулы, полученные в реакциях субстратного фосфорилирования АДФ.

У аэробных организмов конечные продукты гликолиза подвергаются дальнейшим превращениям в биохимических циклах, относящихся к клеточному дыханию. В итоге после полного окисления всех метаболитов одной молекулы глюкозы на последнем этапе клеточного дыхания - окислительном фосфорилировании, происходящем на митохондриальной дыхательной цепи в присутствии кислорода, - дополнительно синтезируются ещё 34 или 36 молекулы АТФ на каждую молекулу глюкозы.

Путь

Первой реакцией гликолиза является фосфорилирование молекулы глюкозы, происходящее при участии тканеспецифичного фермента гексокиназы с затратой энергии 1 молекулы АТФ; образуется активная форма глюкозы - глюкозо-6-фосфат (Г-6-Ф ):

Для протекания реакции необходимо наличие в среде ионов Mg 2+ , с которым комплексно связывается молекула АТФ. Эта реакция необратима и является первой ключевой реакцией гликолиза .

Фосфорилирование глюкозы преследует две цели: во-первых, из-за того что плазматическая мембрана, проницаемая для нейтральной молекулы глюкозы, не пропускает отрицательно заряженные молекулы Г-6-Ф, фосфорилированная глюкоза оказывается запертой внутри клетки. Во-вторых, при фосфорилировании глюкоза переводится в активную форму, способную участвовать в биохимических реакциях и включаться в метаболические циклы.

Печёночный изофермент гексокиназы - глюкокиназа - имеет важное значение в регуляции уровня глюкозы в крови.

В следующей реакции (2 ) ферментом фосфоглюкоизомеразой Г-6-Ф превращается во фруктозо-6-фосфат (Ф-6-Ф ):

Энергия для этой реакции не требуется, и реакция является полностью обратимой. На данном этапе в процесс гликолиза может также включаться путём фосфорилирования и фруктоза .

Далее почти сразу друг за другом следуют две реакции: необратимое фосфорилирование фруктозо-6-фосфата (3 ) и обратимое альдольное расщепление образовавшегося фруктозо-1,6-бифосфата (Ф-1,6-бФ ) на две триозы (4 ).

Фосфорилирование Ф-6-Ф осуществляется фосфофруктокиназой с затратой энергии ещё одной молекулы АТФ; это вторая ключевая реакция гликолиза, её регуляция определяет интенсивность гликолиза в целом.

Альдольное расщепление Ф-1,6-бФ происходит под действием альдолазы фруктозо-1,6-бифосфата :

В результате четвёртой реакции образуются дигидроксиацетонфосфат и глицеральдегид-3-фосфат , причём первый почти сразу под действием фосфотриозоизомеразы переходит во второй (5 ), который и участвует в дальнейших превращениях:

Каждая молекула глицеральдегидфосфата окисляется НАД + в присутствии дегидрогеназы глицеральдегидфосфата до 1,3-дифосфоглицерата (6 ):

Далее с 1,3-дифосфоглицерата , содержащего макроэргическую связь в 1 положении, ферментом фосфоглицераткиназой на молекулу АДФ переносится остаток фосфорной кислоты (реакция 7 ) - образуется молекула АТФ :

Это первая реакция субстратного фосфорилирования. С этого момента процесс расщепления глюкозы перестаёт быть убыточным в энергетическом плане, так как энергетические затраты первого этапа оказываются компенсированными: синтезируются 2 молекулы АТФ (по одной на каждый 1,3-дифосфоглицерат) вместо двух потраченных в реакциях 1 и 3 . Для протекания данной реакции требуется присутствие в цитозоле АДФ, то есть при избытке в клетке АТФ (и недостатке АДФ) её скорость снижается. Поскольку АТФ, не подвергающийся метаболизму, в клетке не депонируется а просто разрушается, то эта реакция является важным регулятором гликолиза.

Затем последовательно: фосфоглицеролмутаза образует 2-фосфоглицерат (8 ):

Енолаза образует фосфоенолпируват (9 ):

И наконец происходит вторая реакция субстратного фосфорилирования АДФ с образованием енольной формы пирувата и АТФ (10 ):

Реакция протекает под действием пируваткиназы. Это последняя ключевая реакция гликолиза. Изомеризация енольной формы пирувата в пируват происходит неферментативно.

С момента образования Ф-1,6-бФ с выделением энергии протекают только реакции 7 и 10 , в которых и происходит к субстратное фосфорилирование АДФ.

Дальнейшее развитие

Окончательная судьба пирувата и НАД∙H , образованных в процессе гликолиза зависит от организма и условий внутри клетки, в особенности от наличия или отсутствия кислорода или других акцепторов электронов.

У анаэробных организмов пируват и НАД∙H далее подвергаются брожению . При молочнокислом брожении, например, у бактерий пируват под действием фермента лактатдегидрогеназы восстанавливается в молочную кислоту. У дрожжей сходным процессом является спиртовое брожение, где конечными продуктами будут этанол и углекислый газ . Известно также маслянокислое и лимоннокислое брожение.

Маслянокислое брожение:

Глюкоза → масляная кислота + 2 CO 2 + 2 H 2 O.

Спиртовое брожение:

Глюкоза → 2 этанол + 2 CO 2 .

Лимоннокислое брожение:

Глюкоза → лимонная кислота + 2 H 2 O.

Брожение имеет важное значение в пищевой промышленности.

У аэробов пируват как правило попадает в цикл трикарбоновых кислот (цикл Кребса), а НАД∙H в итоге окисляется кислородом на дыхательной цепи в митохондриях в процессе окислительного фосфорилирования.

Несмотря на то, что метаболизм человека преимущественно аэробный, в интенсивно работающих скелетных мышцах наблюдается анаэробное окисление. В условиях ограниченного доступа кислорода пируват превращается в молочную кислоту, как происходит при молочнокислом брожении у многих микроорганизмов:

ПВК + НАД∙Н + H + → лактат + НАД + .

Боли в мышцах, возникающие через некоторое время после непривычной интенсивной физической нагрузки, связаны с накоплением в них молочной кислоты.

Образование молочной кислоты является тупиковой ветвью метаболизма, но не является конечным продуктом обмена веществ. Под действием лактатдегидрогеназы молочная кислота окисляется снова, образуя пируват, который и участвует в дальнейших превращениях.

Регуляция гликолиза

Различают местную и общую регуляцию.

Местная регуляция осуществляется путём изменения активности ферментов под действием различных метаболитов внутри клетки.

Регуляция гликолиза в целом, сразу для всего организма, происходит под действием гормонов , которые, влияя через молекулы вторичных посредников, изменяют внутриклеточный метаболизм.

Важное значение в стимуляции гликолиза принадлежит инсулину. Глюкагон и адреналин являются наиболее значимыми гормональными ингибиторами гликолиза.

Инсулин стимулирует гликолиз через:

  • активацию гексокиназной реакции;
  • стимуляцию фосфофруктокиназы;
  • стимуляцию пируваткиназы.

Также на гликолиз влияют и другие гормоны. Например, соматотропин ингибирует ферменты гликолиза, а тиреоидные гормоны являются стимуляторами.

Регуляция гликолиза осуществляется через несколько ключевых этапов. Реакции, катализируемые гексокиназой (1 ), фосфофруктокиназой (3 ) и пируваткиназой (10 ) отличаются существенным уменьшением свободной энергии и являются практически необратимыми, что позволяет им быть эффективными точками регуляции гликолиза.

Регуляция гексокиназы

Гексокиназа ингибируется продуктом реакции - глюкозо-6-фосфатом, который аллостерически связывается с ферментом, изменяя его активность.

По причине того, что основная масса Г-6-Ф в клетке производится путём расщепления гликогена , гексокиназная реакция, по сути, для протекания гликолиза не является необходимой, и фосфорилирования глюкозы в регуляции гликолиза исключительной важности не имеет. Гексокиназная реакция является важным этапом регуляции концентрации глюкозы в крови и в клетке.

При фосфорилировании глюкоза теряет способность транспортироваться через мембрану молекулами-переносчиками, что создаёт условия для накопления её в клетке. Ингибирование гексокиназы Г-6-Ф ограничивает поступление глюкозы в клетку, предотвращая её чрезмерное накопление.

Глюкокиназа (IV изотип гексокиназы) печени не ингибируется глюкозо-6-фосфатом, и клетки печени продолжают накапливать глюкозу даже при высоком содержании Г-6-Ф, из которого в дальнейшем синтезируется гликоген. По сравнению с другими изотипами глюкокиназа отличается высоким значением константы Михаэлиса , то есть на полную мощность фермент работает только в условиях высокой концентрации глюкозы, которая бывает почти всегда после приёма пищи.

Глюкозо-6-фосфат может превращаться обратно в глюкозу при действии глюкозо-6-фосфатазы. Ферменты глюкокиназа и глюкозо-6-фосфатаза участвуют в поддержании нормальной концентрации глюкозы в крови.

Регуляция фосфофруктокиназы

Интенсивность протекания фосфофруктокиназной реакции решающим образом сказывается на всей пропускной способности гликолиза, а стимуляция фосфофруктокиназы считается наиболее важным этапом регуляции.

Фосфофруктокиназа (ФФК) - это тетрамерный фермент, существующий поочерёдно в двух конформационных состояниях (R и T), которые находятся в равновесии и попеременно переходят из одного в другое. АТФ является одновременно и субстратом, и аллостерическим ингибитором ФФК.

В каждой из субъединиц ФФК имеется по два центра связывания АТФ: субстратный сайт и сайт ингибирования. Субстратный сайт одинаково способен присоединять АТФ при любой конформации тетрамера. В то время как сайт ингибирования связывает АТФ исключительно, когда фермент находится в конформационном состоянии T. Другим субстратом ФФК является фруктозо-6-фосфат, который присоединяется к ферменту предпочтительно в R-состоянии. При высокой концентрации АТФ сайт ингибирования занимается, переходы между конформациями фермента становятся невозможными, и большинство молекул фермента оказываются стабилизированными в T-состоянии, неспособном присоединить Ф-6-Ф. Однако ингибирование фосфофруктокиназы АТФ подавляется АМФ, который присоединяется к R-конформациям фермента, стабилизируя таким образом состояние фермента для связывания Ф-6-Ф.

Наиболее важным же аллостерическим регулятором гликолиза и глюконеогенеза является фруктозо-2,6-бифосфат , который не является промежуточным звеном этих циклов. Фруктозо-2,6-бифосфат аллостерически активирует фосфофруктокиназу.

Синтез фруктозо-2,6-бифосфата катализируется особым бифункциональным ферментом - фосфофруктокиназой-2/фруктозо-2,6-бифосфатазой (ФФК-2/Ф-2,6-БФаза). В нефосфорилированной форме белок известен как фосфофруктокиназа-2 и имеет каталитическую активность по отношению к фруктозо-6-фосфату, синтезируя фруктозо-2-6-бифосфат. В результате чего значительно стимулируется активность ФФК и сильно ингибируется активность фруктозо-1,6-бифосфатазы. То есть при условии активности ФФК-2 равновесие этой реакции между гликолизом и глюконеогенезом смещается в сторону первого - синтезируется фруктозо-1,6-бифосфат.

В фосфорилированном виде бифункциональный фермент не обладает киназной активностью, а наоборот в его молекуле активируется сайт, который гидролизует Ф2,6БФ на Ф6Ф и неорганический фосфат. Метаболический эффект фосфорилирования бифункционального фермента состоит в том, что аллостерическая стимуляция ФФК прекращается, аллостерическое ингибирование Ф-1,6-БФазы ликвидируется и равновесие смещается в сторону глюконеогенеза. Продуцируется Ф6Ф и затем - глюкоза.

Взаимопревращения бифункционального фермента осуществляются цАМФ-зависимой протеинкиназой (ПК), которая в свою очередь регулируется циркулирующими в крови пептидными гормонами.

Когда в крови снижается концентрация глюкозы, тормозится также и образование инсулина , а выделение глюкагона напротив стимулируется, и его концентрация в крови резко повышается. Глюкагон (и другие контринсулярные гормоны) связываются с рецепторами плазматической мембраны клеток печени, вызывая активацию мембранной аденилатциклазы . Аденилатциклаза катализирует превращение АТФ в циклический АМФ. цАМФ связывается с регуляторной субъединицей протеинкиназы, вызывая высвобождение и активизацию её каталитических субъединиц, которые фосфорилирует ряд ферментов, включая и бифункциональную ФФК-2/Ф-2,6-БФазу. При этом в печени прекращается потребление глюкозы и активизируются глюконеогенез и гликогенолиз , восстанавливая нормогликемию.

Пируваткиназа

Следующим шагом, где осуществляется регуляция гликолиза, является последняя реакция - этап действия пируваткиназы. Для пируваткиназы также описан ряд изоферментов, имеющих особенности регуляции.

Печёночная пируваткиназа (L-тип) регулируется при фосфорилировании, аллстерическими эффекторами и путём регуляции экспрессии генов. Фермент ингибируется АТФ и ацетил-КоА и активируется фруктозо-1,6-бифосфатом. Ингибирование пируваткиназы АТФ происходит подобно действию АТФ на ФФК. Связывание АТФ с сайтом ингибирования фермента уменьшает его сродство к фосфоенолпирувату. Печёночная пируваткиназа фосфорилируется и ингибируется протеинкиназой, и таким образом также находится под гормональным контролем. Кроме того, активность печёночной пируваткиназы регулируется и количественно, то есть изменением уровня его синтеза. Это медленная, долговременная регуляция. Увеличение в рационе углеводов стимулирует экспрессию генов, кодирующих пируваткиназу, в результате уровень фермента в клетке повышается.

М-тип пируваткиназы , найденный в головном мозге, мышцах и других глюкозо-потребных тканях не регулируется протеинкиназой. Это принципиально в том, что метаболизм этих тканей определяется только внутренними потребностями и не зависит от уровня глюкозы в крови.

Мышечная пируваткиназа не подвержена внешним влияниям, таким как понижение уровня глюкозы в крови или выброс гормонов. Внеклеточные условия, которые приводят к фосфорилированию и ингибированию печёночного изофермента, не изменяют активность пируваткиназы М-типа. То есть интенсивность гликолиза в поперечнополосатой мускулатуре определяется только условиями внутри клетки и не зависит от общей регуляции.

Значение

Гликолиз - катаболический путь исключительной важности. Он обеспечивает энергией клеточные реакции, в том числе и синтез белка. Промежуточные продукты гликолиза используются при синтезе жиров . Пируват также может быть использован для синтеза аланина , аспартата и других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

См. также

Ссылки

  • Гликолиз (англ.)

Гликолиз (от греч. glycys – сладкий, lysis - разрушение) – универсальный и основной процесс катаболизма углеводов для большинства организмов. Гликолиз – процесс анаэробный, однако он может протекать как в отсутствие, так и в присутствии кислорода. Он является ключевым метаболитическим путем, генерирующим энергию в форме АТФ в клетках, где отсутствует фотосинтез.

Исследования химизма гликолиза показали, то начальные этапы процессов брожения и дыхания имеют общий путь. Это открытие было уникальным, потому что оно вскрывало существование внутреннего единства в живой материи. При дыхании у аэробных организмов гликолиз предшествует циклу трикарбоновых кислот и цепи переноса электронов. Пируват проникает в митохондрии, где он полностью окисляется до СО2, в результате чего с высокой эффективностью из гексозы извлекается свободная энергия. При брожении, в анаэробных условиях, пируват превращается в продукты брожения. У подавляющей части клеток ферменты, катализирующие гликолитические реакции, присутствуют в растворимой форме в цитозоле, т.е. в гомогенной водной фазе цитоплазмы. В отличие от них ферменты, катализирующие те этапы окисления углеводов, которые требуют присутствия кислорода, локализуются в митохондриальных мембранах.

Расщепление шестиуглеродной молекулы глюкозы на две трехуглеродные молекулы пирувата совершается при участии десяти ферментов. Все они были выделены в чистом виде из разных видов организмов и тщательно изучены.

Гликолиз осуществляется во всех живых клетках организмов. В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты: С 6 Н 12 O 6 -> 2С 3 Н 4 O 2 + 2Н 2 . Этот окислительный процесс может протекать в анаэробных условиях (в отсутствие кислорода) и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилирования шестого углеродного атома за счет взаимодействия с АТФ:

глюкоза + АТФ глюкозо-6-фосфат + АДФ

Реакция идет в присутствии ионов магния и фермента гексокиназа. Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализируется ферментом фосфоглюкоизомеразой:

глюкозо-6-фосфат фруктозо-6-фосфат

фруктозо-6-фосфат + АТФ фруктозо-1,6-дифосфат + АДФ

Дальнейшие реакции, составляющие процесс гликолиза, складываются следующим образом: фруктозо-1,6-дифосфат расщепляется с образованием двух триоз, реакция катализируется ферментом альдолазой, которая состоит из четырех субъединиц и содержит свободные SH-группы. Молекула фосфодиоксиацетона при участии фермента триозофосфатизомеразы превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицериновой кислоты (ДФГК). Это важнейший этап гликолиза. Процесс идет с участием неорганического фосфата (Н 3 РO 4) и фермента глицеральдегид-3-фосфатдегидро-геназы. Молекула этого фермента состоит из четырех идентичных субъединиц. Каждая субъединица представляет одиночную полипептидную цепь приблизительно из 220 аминокислотных остатков. Фермент содержит SH-группы и кофермент НАД, который взаимосвязан с ферментом на всем протяжении процесса. Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК. Окисление идет с выделением энергии. За счет энергии окисления при участии неорганического фосфата (Н 3 РO 4) в молекуле ДФГК образуется макроэргическая фосфатная связь. Одновременно происходит восстановление кофермента НАД.

Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды. Таким образом, суммарное уравнение гликолиза. В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ. Образование АТФ в процессе следующее:

C6H12O6 + 2АТФ + 2НАД + 2Фн + 4АДФ → 2ПВК 2НАДН + 2Н + + 4АТФ + 2АДФ

Реакция гликолиза носит название субстратного фосфорилирования, поскольку макроэргические связи возникают на молекуле окисляемого субстрата. Если считать, что при распаде АТФ из АДФ и Фн выделяется 30,6 кДж, то за период гликолиза накапливается в макроэргических фосфатных связях всего 61,2 кДж. Прямые определения показывают, что распад молекулы глюкозы до пировиноградной кислоты сопровождается выделением 586,6 кДж. Следовательно, энергетическая эффективность гликолиза невелика. Кроме того, образуются 2 молекулы НАДН, которые вступают в дыхательную цепь, что приводит к дополнительному образованию АТФ. Образовавшиеся две молекулы пировиноградной кислоты участвуют в аэробной фазе дыхания.

Регуляция гликолиза

Гликолиз выполняет две функции:

1) генерирует АТФ за счет расщепления гексозы
2) поставляет строительные блоки для реакций синтеза.

Его регуляция и направлена на удовлетворение этих двух потребностей клетки. Реакции, катализируемые гексокиназой, фосфофруктокиназой и пируваткиназой, практически необратимы; они выполняют не только каталитическую, но и регуляторную функции.

Особая роль в выполнении регуляторной функции отводится фосфофруктокиназе (катализирует превращение фруктозо-6-фосфата в фруктозо-1,6-дифосфат, данная реакция является наиболее медленно текущей и определяет скорость всего процесса). Активность фосфофруктокиназы аллостерически контролируется рядом важных метаболитов, а именно:

1) фосфорилированными промежуточными продуктами, такими как глицеральдегид-3-фосфат, 2-фосфоглицерат и фосфоенолпируват;
2) адениннуклеотидом и ортофосфатом. Фосфофруктокиназа ингибируется высокими концентрациями АТФ, снижающими ее сродство к фруктозо-6-фосфату.

Активность фермента возрастает при снижении отношения АТФ/АМФ. Иначе говоря, гликолиз стимулируется в условиях низкого уровня энергии в клетке. На активность фосфофруктокиназы влияют также избыток или недостаток строительных блоков. Так, она ингибируется цитратом – ромежуточным продуктоам на начальных стадиях цикла трикарбоновых кислот. Избыток цитрата означает, что соединения, играющие в биосинтезе роль предшественников, присутствуют в больших количествах и, следовательно, необходимо снижение интенсивности гликолиза. Таким образом, когда клетка нуждается в энергии и строительных блоках, о чем свидетельствует низкое значение отношения АТФ/АМФ и низкое содержание цитрата, фосфофруктокиназа наиболее активна. При избытке энергии и строительных углеродных фрагментов активность фермента резко снижается.

Катализирующая неравновесную реакцию пируваткиназа (перенос фосфатной группы от фосфоенолпирувата на АДФ) ингибируется АТФ и цитратом и активируется своим субстратом и АДФ.

Повышение уровня АТФ, глюкозо-6-фосфата, как и цитрата, приводит к ингибированию гексокиназы (катализирует реакцию фосфорилирование глюкозы с образованием глюкозо-6-фосфат).

Это главный путь утилизации глюкозы- важнейший физиологический процесс, осуществляющийся в цитоплазме практически всех живых, как прокариотических, так и эукараотических, клеток. Гликолиз - это анаэробный (в отсутствие кислорода) процесс расщепления углеводов с освобождением энергии. В растениях в результате гликолиза образуется пируват , молекулы которого далее окисляются до двуокиси углерода и воды в цикле Кребса и электроннотранспортной цепи.

Конечные продукты, преимущественно: лактат в анаэробных условиях, CO 2 и H 2 O в аэробных.

Минимальные потребности в глюкозе имеют все ткани, но у некоторых из них (например, тканей мозга, эритроцит ов) эти потребности весьма значительны. Гликолиз протекает во всех клетках. Это уникальный путь, поскольку он может использовать кислород, если последний доступен (аэробные условия), но может протекать и в отсутствие кислорода (анаэробные условия).

Уже на ранних этапах изучения метаболизма углеводов было установлено, что процесс брожения в дрожжах во многом сходен с распадом гликоген а в мышце. Исследования гликолитического пути проводили именно на этих двух системах.

При изучении биохимических изменений в ходе мышечного сокращения было установлено, что при функционировании мышцы в анаэробной (бескислородной) среде происходит исчезновение гликоген а и появление пируват а и лактат а в качестве главных конечных продуктов. Если затем обеспечить поступление кислорода, наблюдается "аэробное восстановление": образуется гликоген, и исчезают пируват и лактат. При работе мышцы в аэробных условиях накопления лактата не происходит, а пируват окисляется далее, превращаясь в CO 2 , и H 2 O. В анаэробных условиях реокисление NADH путем переноса восстановительных эквивалентов на дыхательную цепь и далее на кислород происходить не может. Поэтому NADH восстанавливает пируват в лактат. Реокисление NADH путем образования лактата обеспечивает возможность протекания гликолиза в отсутствие кислорода, поскольку поставляется NAD+ необходимый для глицеральдегид-3-фосфатдегидрогеназной реакции. Таким образом, в тканях, функционирующих в условиях гипоксии , наблюдается образование лактата ( Пентозофосфатный путь, гликолиз, глюконеогенез: метаболическая карта). Это в особенности справедливо в отношении скелетной мышцы, интенсивность работы которой в определенных пределах не зависит от поступления кислорода. Образующийся лактат может быть обнаружен в тканях, крови и моче. Гликолиз в эритроцит ах даже в аэробных условиях всегда завершается образованием лактата, поскольку в этих клетках отсутствуют митохондрии, содержащие ферментные системы аэробного окисления пирувата. Эритроциты млекопитающих уникальны в том отношении, что около 90% их потребностей, в энергии обеспечивается гликолизом. Помимо скелетной мышцы и эритроцитов ряд других тканей ( мозг , желудочно-кишечный тракт , мозговой слой почек , сетчатка и кожа) в норме частично используют энергию гликолиза и образуют молочную кислоту. Печень, почки и сердце обычно утилизируют лактат, но в условиях гипоксии образуют его.

жэжэжэжээжэ

Как происходит окисление глюкозы в клетке? В этом процессе участвует множество ферментов. Ферментативное расщепление и окисление глюкозы называют гликолизом (греч. glycos - сладкий, lysis - расщепление). Ферменты, окисляющие глюкозу, составляют своего рода ферментативный "конвейер". Гликолиз происходит в цитоплазме. При этом одна шестиуглеродная молекула глюкозы С6Н12О6 ступенчато расщепляется и окисляется при участии ферментов до двух трехуглеродных молекул пировиноградной кислоты В этом превращении глюкозы последовательно участвуют девять ферментов. Если мы сравним число атомов в двух молекулах пировиноградной кислоты СН3СОСООН и в молекуле глюкозы С6Н]206, то увидим, что в процессе гликолиза молекула глюкозы не только расщепляется на две трехуглеродные молекулы, но и теряет четыре атома водорода, т. е. происходит окисление ее. Акцептором водорода (и электронов) в этих реакциях служат молекулы никотинамидадениндинуклеотида (

Гликолиз – (от. греч. glycys - сладкий и lysis - растворение, распад) – бескислородный распад, в ходе которого синтезируются две молекулы АТФ на молекулу глюкозы. Конечными продуктами гликолиза являются пируват и NADH. Процесс гликолиза катализируется одиннадцатью ферментами.

Первой реакцией является фосфорилирование, т.е. перенос остатка ортофосфата на глюкозу за счет АТФ. Реакция катализируется ферментом гексокиназой и считается практически необратимой:

Второй реакций гликолиза является превращение глюкозо-6-фосфата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат. Реакция легко протекает в обоих направлениях, и для нее не требуется каких-либо кофакторов:

Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

Данная реакция аналогично гексокиназной практически необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза.

Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-бифосфат расщепляется на две фосфотриозы. Реакция обратима.

Пятая реакция – это реакция изомеризации триозофосфатов. Катализируется ферментом триозофосфатизомеразой:

В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается своеобразному окислению с образованием 1,3-бифосфогли­цериновой кислоты и восстановленной формы НАД (НАДН). Реакция протекает в несколько этапов:

Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты (3-фосфоглицерат):

Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосоглицериновая кислота превращается в 2-фосфо­глицериновую кислоту (2-фосфоглицерат). Реакция легко обратима, протекает в присутствии ионов Mg 2+ .

Девятая реакция катализируется ферментом енолазой, при этом фосфоглицериновая кислота в результате отщепления молекулы воды переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:

Енолаза активируется двухвалентными катионами Mg 2+ или Mn 2+ и ингибируется фторидом.

Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ (субстратное фосфорилирование). Катализируется ферментом пируваткиназой:

Для действия пируватканизы необходимы ионы Mg 2+ , а также одновалентные катионы щелочных металлов (К + или др.) Внутри клетки реакция является практически необратимой.

В результате одиннадцатой реакции происходит восстановление пировиноградной кислоты и образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:

Последовательность реакций, протекающих при гликолизе, показана на рис. 26.

Рис. 26. Последовательность реакций гликолиза

1 - гексокиназа, 2 - фосфоглюкоизомераза, 3 - фосфофруктокиназа, 4 - альдолаза,
5 - триозофосфоизомераза, 6 - глицеральдегидфосфатдегидрогеназа,
7 - фосфоглицераткиназа, 8 - фосфоглицератмутаза, 9 - енолаза, 10 - пируваткиназа,
11 - лактатдегидрогеназа

Биологическое значение процесса гликолиза заключается прежде всего в образовании богатых энергией фосфатных соединений. На первых стадиях гликолиза затрачиваются 2 молекулы АТФ (гексокиназная и фосфофруктокиназная реакции). На последующих образуется 4 молекулы АТФ (фосфоглицераткиназная и пируваткиназная реакции). Таким образом, энергетическая эффективность гликолиза составляет 2 молекулы АТФ на одну молекулу глюкозы.

Если гликолиз протекает в аэробных условиях, пируват и НАДН поступают в митохондрии, где пируват окисляется до СО 2 и Н 2 О, а НАДН в НАД.

При анаэробном гликолизе происходит образование молочной кислоты из пирувата. Анаэробный гликолиз происходит в мышцах в первые минуты мышечной работы, в эритроцитах, в которых нет митохондрий, а также в различных органах и тканях при недостаточном снабжении их кислородом.

У многих микроорганизмов, растущих в анаэробных условиях, гликолиз является основным катаболитическим путем, предназначенным для извлечения пирувата из углеводных субстратов; дальнейшее превращение пирувата приводит к образованию определенных конечных продуктов метаболизма – продуктов брожения. Химическая природа этих продуктов зависит от вида микроорганизма и условий протекания процесса, в которых один и тот же микроорганизм осуществляет брожение.

Основными типами брожений являются спиртовое, молочнокислое, маслянокислое и др.